Open Access Article
Advances in International Applied Mathematics. 2023; 5: (4) ; 39-43 ; DOI: 10.12208/j.aam.20231025.
The application and promotion of ptolemy's theorem and inequalitiesin maximum-minimum value problems
托勒密定理及不等式在最值问题中的应用与推广
作者:
王洁 *
扬州大学 江苏扬州
*通讯作者:
王洁,单位:扬州大学 江苏扬州;
发布时间: 2023-10-20 总浏览量: 1131
PDF 全文下载
引用本文
万方数据(WANFANG DATA)
摘要
托勒密定理及托勒密不等式是平面几何中的重要定理及推论。运用托勒密定理及托勒密不等式不仅对解决平面圆内接四边形问题具有重要作用,还给出解决代数中某类最值问题的通用解法,这一解法拓展了代数问题几何化的解题思路,提供了快速解题的捷径。本文通过分析托勒密定理在一元双根式函数最大值问题中的解题思路,并举例说明托勒密不等式在平面几何一类最值问题中的解法,总结归纳出了代数中一元双根式函数最大值问题和平面几何中平面四边形某类最值问题的一般性结论。在代数与平面几何此类最值问题上,给中高考考生或参加数学竞赛等学有余力者创造出新的速解方法。
关键词: 托勒密定理;托勒密不等式;平面和几何;最值问题;应用与推广
Abstract
Ptolemy 's theorem and Ptolemy 's inequality are important theorems and corollaries in plane geometry. The use of Ptolemy 's theorem and Ptolemy 's inequality not only plays an important role in solving the problem of plane circle inscribed quadrilateral, but also gives a general solution to a certain kind of maximum-minimum value problems in algebra. This solution expands the problem-solving idea of geometricization of algebraic problems and provides a shortcut for fast problem-solving. In this paper, by analyzing the solution of Ptolemy 's theorem in the maximum value problems of one-variable double-root function, and giving examples to illustrate the solution of Ptolemy 's inequality in the maximum-minimum value problem of plane geometry, the general conclusions of some kinds of maximum value problems of one-variable double-root function in algebra and the maximum-minimum value problems of plane quadrilateral in plane geometry are summarized. On the maximum-minimum value problems such as algebra and plane geometry, a new fast solution method is created for the candidates of high school entrance examination or those who have the ability to participate in mathematics competitions.
Key words: Ptolemy 's theorem; Ptolemaic inequality; Plane and geometry; The Maximum-minimum value problem; Application and promotion
参考文献 References
[1] 丁奕涵,张美玲,唐玉华.四点共圆之托勒密定理[J].中学生数学,2022(12):35-36.
[2] 陈武.掌握托勒密定理简证一类几何题[J].中小学数学(初中版),2020(12):29-30.
[3] 闫伟.一道填空压轴题的解法探究及拓展应用[J].数学通讯,2020(09):8-10.
[4] 丁庆彬.对一道托勒密定理模型试题的探究[J].中学数学教学参考,2021(20):26-28.
[5] 刘钢.合纵连横 整体把握——托勒密定理一席谈[J].高中数学教与学,2023(06):11-13.
引用本文
王洁, 托勒密定理及不等式在最值问题中的应用与推广[J]. 国际应用数学进展, 2023; 5: (4) : 39-43.