期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Applied Mathematics. 2024; 6: (1) ; 22-25 ; DOI: 10.12208/j.aam.20240015.

An exploration of generalised functional analysis and its application to optimisation problems
泛函分析及其在优化问题中的应用探索

作者: 张旭 *

南昌航空大学 江西南昌

*通讯作者: 张旭,单位:南昌航空大学 江西南昌;

发布时间: 2024-03-22 总浏览量: 1668

摘要

泛函分析作为现代数学的重要分支,其基本原理在优化问题中发挥着日益重要的作用。优化问题广泛存在于各个领域,如机器学习、信号处理、图像处理等,而泛函分析为这些问题的解决提供了有力的数学工具。通过深入研究泛函分析的基本原理,我们可以更好地理解优化问题的本质,并探索出更加高效、精确的求解方法。泛函分析在优化问题中的应用具有广阔的前景和潜力。通过深入研究泛函分析的基本原理,并结合具体的应用场景,我们可以探索出更加高效、精确的求解方法,为各个领域的发展提供有力的数学支持。

关键词: 泛函分析;优化问题;应用

Abstract

As an important branch of modern mathematics, the basic principles of general functional analysis play an increasingly important role in optimisation problems. Optimisation problems widely exist in various fields, such as machine learning, signal processing, image processing, etc., and general function analysis provides a powerful mathematical tool for the solution of these problems. By delving into the basic principles of general functional analysis, we can better understand the nature of optimisation problems and explore more efficient and accurate solution methods. The application of general functional analysis in optimisation problems has a broad prospect and potential. By deeply studying the basic principles of general functional analysis and combining them with specific application scenarios, we can explore more efficient and accurate solution methods and provide powerful mathematical support for the development of various fields.

Key words: Generalized functional analysis; Optimisation problems; Applications

参考文献 References

[1] 张世清.泛函分析及其应用[M].科学出版社,2018.

[2] 仝策中,苑子兴,高慧.比较判别法在泛函分析中的应用[J].大学数学, 2023, 39(3):77-82.

[3] Käenmäki, A.. "On natural invariant measures on generalised iterated function systems." arXiv: Dynamical Systems (2017).

[4] Khan, B., et al. "Inclusion Relations for Dini Functions Involving Certain Conic Domains." Fractal and Fractional (2022).

[5] Shah, S., et al. "Application of Quasisubordination to Certain Classes of Meromorphic Functions." Journal of Function Spaces and Applications (2020).

[6] LI S ,MA L ,NIU X .Harmonic Univalent Functions Related with Generalized (p, q)-Post Quantum Calculus Operators[J].Journal of Mathematical Research with Applications,2021,41(04):355-367.

[7] Perepelkin, E., et al. "Explicit form for the kernel operator matrix elements in eigenfunction basis of harmonic oscillator." Journal of Statistical Mechanics: Theory and Experiment (2020).

[8] Mesnager, Sihem, et al. "Investigations on c-(Almost) Perfect Nonlinear Functions." IEEE Transactions on Information Theory (2021).

[9] 纪友清.应用泛函分析[M].科学出版社,2018.

[10] 陈碧云.主动式早期乳腺癌微波成像的研究[D].南京邮电大学,2020.

[11] 美 斯坦恩 Stein, Elias M,美 沙卡什 Shakarchi, Rami.泛函分析[M].机械工业出版社,2019.

[12] (加) 克雷斯齐格 (Kreyszig, Erwin).泛函分析导论及应用[M].人民邮电出版社,2022.

[13] 赵君喜.应用泛函分析[M].东南大学出版社,2021.

引用本文

张旭, 泛函分析及其在优化问题中的应用探索[J]. 国际应用数学进展, 2024; 6: (1) : 22-25.