期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Applied Mathematics. 2024; 6: (3) ; 54-58 ; DOI: 10.12208/j.aam.20240027.

Research on solving sequence summation problems in mathematical competitions
数学竞赛中解决数列求和问题的研究

作者: 余文杰 *

扬州大学 江苏扬州

*通讯作者: 余文杰,单位:扬州大学 江苏扬州;

发布时间: 2024-09-05 总浏览量: 341

摘要

数列是高中数学三条知识主线其一的几何与代数中的重要内容,通过对数列的学习可以加深学生对函数问题的理解,也为未来高等数学中的级数,分部积分法等相关内容的学习做好铺垫。数列求和作为数列中最常见的问题,不仅是高考的重要考查内容,也在数学竞赛中占据重要地位,本文结合实例梳理了数学竞赛和高考真题中数列求和问题的解题方法与策略,并给出对高中数学竞赛教师在数列求和解题专题教学和学生解题方法学习的建议。

关键词: 数学竞赛;数列求和;解题策略

Abstract

Series is an important part of geometry and algebra, one of the three main knowledge lines of high school mathematics. Learning series can deepen students' understanding of function problems, and pave the way for the future study of series, integration by parts and other related content in higher mathematics. As the most common problem in the series of numbers, summation is not only the important content of the college entrance examination, but also occupies an important position in the mathematics competition. This paper combing through the methods and strategies of solving the series summation problems in the math competition and the college entrance examination, and gives some suggestions for teachers in the senior high school mathematics competition in the thematic teaching of series summation problems and students' learning of problem-solving methods.

Key words: Mathematics competition; Series summation; Problem solving strategy

参考文献 References

[1] 陆晨.高中数学课堂练习设计有效性的研究[D].华东师范大学,2020.

[2] 濮安山,左浩德,黄强联.初等数学研究[M].长春:东北师范大学出版社,2023.

[3] 仲利军.阿贝尔求和法及应用[J].数学教学研究,2002,(10):36-37.

[4] 吴仁芳,张立京.基于数学模式探析数学竞赛中的数列问题[J].中学数学研究(华南师范大学版),2023, No.493 (01): 24-30.

[5] 张志刚.一道数列竞赛题的探源,求解与拓展[J].中学数学研究(华南师范大学):上半月, 2022(14):32-34.

引用本文

余文杰, 数学竞赛中解决数列求和问题的研究[J]. 国际应用数学进展, 2024; 6: (3) : 54-58.