Open Access Article
Advances in International Applied Mathematics. 2024; 6: (4) ; 45-49 ; DOI: 10.12208/j.aam.20240043.
Analysis of the construction method to solve high school series competition questions
构造法解高中数列竞赛题例析
作者:
汤一鸣 *
扬州大学数学科学学院 江苏扬州
*通讯作者:
汤一鸣,单位:扬州大学数学科学学院 江苏扬州;
发布时间: 2024-12-16 总浏览量: 9
PDF 全文下载
引用本文
摘要
数列是高考和竞赛中重要内容,数列问题是考查学生逻辑推理、转化化归的有效载体。不管是在求数列通项或证明数列相关不等式时常常用到构造法,本文将通过例题分析如何用构造法解高中数列竞赛题。
关键词: 数列;构造法;高中数学竞赛
Abstract
Series is an important content in the college entrance examination and competitions. Series problems are an effective carrier for testing students' logical reasoning and transformation and reduction. Whether it is to find the general term of a series or to prove the related inequality of a series, the construction method is often used. This article will analyze how to use the construction method to solve high school series competition questions through examples.
Key words: Series; Construction method; High school mathematics competition
参考文献 References
[1] 吴仁芳,张立京.基于数学模式探析数学竞赛中的数列问题[J].中学数学研究(华南师范大学版),2023,(01):24-30.
[2] 于尖兵.三类不同递推数列问题的解题技巧分析[J].数理天地(高中版),2024,(09):53-54.
[3] 王秀娣,何玉友.高中数学中的换元法[J].数理天地(高中版),2020,(05):9-10+8.
[4] 朱琳.构造函数法在高中数学解题中的应用策略[J].数理天地(高中版),2023,(17):30-31.
[5] 郑良.探寻问题本质培养理性思维——以“对偶式的构造”教学为例[J].中小学数学(高中版),2020,(03):55-59.
引用本文
汤一鸣, 构造法解高中数列竞赛题例析[J]. 国际应用数学进展, 2024; 6: (4) : 45-49.