期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Applied Mathematics. 2025; 7: (1) ; 24-30 ; DOI: 10.12208/j.aam.20250005.

Exploration of solutions to middle school mathematics examination questions from the perspective of core competencies- Thoughts on a final question in the Middle School Entrance Examination
核心素养视角下中考数学试题解法探究—关于一道中考压轴题的思考

作者: 王奕迅 *

扬州大学数学科学学院 江苏扬州

*通讯作者: 王奕迅,单位:扬州大学数学科学学院 江苏扬州;

发布时间: 2025-03-29 总浏览量: 156

摘要

中考数学试题直接影响着初中的数学教学,本文对一道2024年徐州市中考数学压轴题,采用一题多解的形式探讨几何中动态定值问题的解题策略,帮助学生在复杂的动态几何问题中抓住关键要素,建立几何模型,通过转化与推理解决问题,掌握求解几何定值问题的基本方法,以期培养学生一题多解的思维方式,提高分析问题,解决问题的能力;文章还从核心素养以及教学的视角进行解题总结与反思:教师要关注解题教学,把握问题本质,擅用一题多解,培养学生数学思维,帮助培养学生核心素养。

关键词: 数学核心素养;一题多解;中位线;转化

Abstract

The mathematics test questions of the high school entrance examination directly influence the mathematics teaching in junior high school. This paper explores the problem-solving strategies for dynamic constant value problems in geometry by using multiple solutions to a 2024 mathematics high school entrance examination question in Xuzhou City. It aims to help students grasp the key elements in complex dynamic geometry problems, establish geometric models, solve problems through transformation and reasoning, and master the basic methods for solving geometric constant value problems. The goal is to cultivate students' ability to solve problems in multiple ways, enhance their problem analysis and solving skills. The article also summarizes and reflects on the problem-solving process from the perspectives of core literacy and teaching: teachers should focus on problem-solving teaching, grasp the essence of the problem, skillfully apply multiple solutions, cultivate students' mathematical thinking, and help students develop core literacy.

Key words: Core literacy of mathematics; Multiple solutions to one problem; Midline; Transformation

参考文献 References

[1] 潘正刚. 建构模型,促进高阶数学思维的发展[J]. 中学数学教学参考, 2020, (29): 75-78.

[2] 周琛. 几何中动态最值问题的求解策略——一道中考压轴题的思路及解法赏析[J]. 初中数学教与学, 2023, (13): 26-28+43.

[3] 李昕雨. 2023年常州市中考数学第18题解法探究[J]. 数理化解题研究, 2024, (14): 15-17.

[4] 孙霞. 数学几何直观的内涵、价值与培养策略[J]. 教师教育论坛, 2024, 37(06): 53-55.

[5] 唐保祥. 问题引导初中生逻辑推理素养提升[J]. 数学通报, 2023, 62(04): 34-39.

[6] 张宁. 追根溯源探本质一题多解提能力——一道中考题的探源、解法及变式[J]. 初中数学教与学, 2024, (19): 16-19.

[7] 邓丽雯. 以“波利亚怎样解题”探索数学思维的形成[J]. 科学大众(科学教育), 2019, (06): 27.

[8] 陈莉. 新课标背景下初中数学解题教学策略[J]. 亚太教育, 2023, (17): 118-120.

引用本文

王奕迅, 核心素养视角下中考数学试题解法探究—关于一道中考压轴题的思考[J]. 国际应用数学进展, 2025; 7: (1) : 24-30.