摘要
本研究以2024年无锡中考数学试卷为例,基于SOLO分类理论从试题类型与课程内容两方面进行分析。研究发现,试卷结构层次分明,难度设计合理稳定,具有较强的区分度。通过不同层次的试题分析,为教师提供教学参考,帮助教师更好地理解学生的学习表现,调整教学策略。研究对教学的启示主要为四方面:夯实基础知识、强化知识联系、培养数学思维以及跨学科迁移能力。本研究旨在为数学教育研究提供新的视角和方法,推动数学教育的改革与发展。
关键词: SOLO理论;中考数学;试题分析;教学启示
Abstract
This study takes the 2024 Wuxi High School Entrance Examination Mathematics Paper as an example, and analyzes it from two aspects: test question type and course content based on the SOLO classification theory. The study found that the test paper has a clear structure, a reasonable and stable difficulty design, and a strong degree of differentiation. Through the analysis of test questions at different levels, it provides teachers with teaching references to help them better understand students' learning performance and adjust teaching strategies. The research has four main implications for teaching: consolidating basic knowledge, strengthening knowledge connections, cultivating mathematical thinking, and interdisciplinary transfer capabilities. This study aims to provide new perspectives and methods for mathematics education research and promote the reform and development of mathematics education.
Key words: SOLO theory; Mathematics in the high school entrance examination; Test question analysis; Teaching enlightenment
参考文献 References
[1] 中华人民共和国教育部.义务教育数学课程标准(2022年版)[M].北京:北京师范大学出版社,2022.
[2] Biggs, J., & Collis, K. Evaluating the Quality of Learning: The SOLO Taxonomy[M]. Academic Press,1982.
[3] 鲁永婧, 左浩德.基于SOLO分类理论的高考数学试题分析——以2023年全国数学新高考Ⅰ卷为例[J].高中数学教与学, 2024,(15):4-7.
[4] 刘海涛,张灿.SOLO分类理论下对四省联考解析几何题的研究[J].数理化学习(高中版),2023,(09):21-23.
[5] 陈峥.中考数学试题中函数部分的SOLO思维层次研究——以2022~2024年苏州卷为例[J].教育进展, 2025, 15(1): 669-678.
[6] 刘璇.以评促教视域下的中考数学试题研究[J].理科考试研究,2025,32(01):33-36.
[7] 尹秋云.SOLO分类理论视角下的中考数学试题评价研究——以2024年广东省初中学业水平考试试卷为例[J].理科考试研究,2024,31(22):17-22.
[8] 苏洪雨,杨洋.跨学科项目式导向考查数学探究创新——2024年中考“综合与实践”专题解题分析[J].中国数学教育(初中版), 2024(12):50-61.