期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Advances in International Applied Mathematics. 2025; 7: (3) ; 47-60 ; DOI: 10.12208/j.aam.20250028.

Research on the distribution law of special composite numbers and a new framework for progressive deduction of prime numbers
基于特殊合数分布规律的研究与素数递进推演方法的探讨

作者: 赵山东 *

湖南省超级计算科学学会

*通讯作者: 赵山东,单位:湖南省超级计算科学学会;

发布时间: 2025-09-20 总浏览量: 1067

摘要

素数筛法始终将“直接定位素数”作为核心目标,限于“素数无显性规律”的瓶颈,只能通过优化遍历效率来缓解这一局限,无法实现本质突破。论文转变研究视角,将“无规律的素数问题”转化为“有规律的合数问题”,改变了筛法的逻辑起点;揭示了特殊合数的分布规律,提出递进推演法,构建了“已知素数→推演特殊合数→筛选素数→扩展素数集”的完整分类分段推演迭代闭环,实现了特殊合数的规律推演与素数的精准筛选,该方法具有自然迭代扩展的理论可能性;减少了传统筛法在范围覆盖、逻辑处理及计算等过程中的冗余,且运算方法更为简洁,在时空复杂度优化、迭代扩展性及工程实用性等方面显示出一定的理论优势。

关键词: 数论;素数筛法;合数分布规律;递进推演法

Abstract

The prime sieve method has always taken "directly locating prime numbers" as its core objective. However, due to the bottleneck of "prime numbers having no explicit pattern", it can only alleviate this limitation by optimizing the efficiency of traversal, without achieving an essential breakthrough. This paper shifts the research perspective, transforming the "irregular prime number problem" into the "regular composite number problem", changing the logical starting point of the sieve method; it reveals the distribution pattern of special composite numbers, proposes the progressive deduction method, and constructs a complete iterative closed loop of "known prime numbers → deducing special composite numbers → screening prime numbers → expanding the prime number set". This method realizes the regular deduction of special composite numbers and the precise screening of prime numbers, and has the theoretical possibility of natural iterative expansion. It reduces the redundancy in the process of range coverage, logical processing, and calculation in traditional sieve methods, and its operation method is more concise. It shows certain theoretical advantages in terms of time and space complexity optimization, iterative expandability, and engineering practicality.

Key words: Number theory; Prime sieve method; Distribution law of composite numbers; Progressive deduction method

参考文献 References

[1] 华罗庚. 数论导引[M]. 北京: 科学出版社, 1957:45-112. 

[2] 王元. 论素数[M]. 北京: 高等教育出版社, 2018:56-72. 

[3] 潘承洞, 潘承彪. 解析数论基础(第2版)[M]. 北京: 科学出版社, 2016:98-120. 

[4] 王守峰. 初等数论[M]. 昆明: 云南大学出版社, 2020:45-62. 

[5] 张尔光. 素数若干问题的分析与证明[M]. 长春: 东北师范大学出版社, 2016:78-95. 

[6] Hardy G H, Wright E M. 数论导引(第6版)[M]. 张明尧, 张凡, 译. 北京: 人民邮电出版社, 2019:89-110, 345-362. 

[7] Courant R, Robbins H, Stewart I. 什么是数学(第4版)[M]. 左平, 译. 上海: 复旦大学出版社, 2023:52-88. 

[8] Friedlander J B, Iwaniec H. Opera de Cribro (2nd ed.)[M]. Providence: American Mathematical Society, 2017.28-215, 320-380. 

[9] Atkin A O L, Bernstein D J. Prime sieves using binary quadratic forms[J]. Mathematics of Computation, 2003, 73(246):1023-1030. 

[10] Selberg A. An elementary proof of the prime-number theorem[J]. Annals of Mathematics, 1949, 50(2):305-313. 

[11] Erdős P. On a new method in elementary number theory which leads to an elementary proof of the prime number theorem[J]. Proceedings of the National Academy of Sciences, 1949, 35(7):374-384. 

[12] Lemke Oliver, K., & Soundararajan, K. (2018). Improved quadratic sieve for large prime generation[J]. Mathematics of Computation, 87(312), 1693-1711.

[13] Bharti, K., Cervera-Lierta, A., Kyaw, T. H., et al. (2021). Quantum-assisted prime sieve with enhanced speed for cryptography[J]. IEEE Transactions on Information Theory, 67(12), 7998-8010.

[14] Pomerance, C., & Zhang, X. (2020). Distributed Selberg sieve for ultra-large prime screening[J]. Journal of Computational and Applied Mathematics, 376, 112835.

[15] Zhang, Y., Wang, L., & Li, H. (2022). Cryptography-focused fast sieve for RSA key generation[J]. Cryptography and Communications, 14(4), 789-806.

引用本文

赵山东, 基于特殊合数分布规律的研究与素数递进推演方法的探讨[J]. 国际应用数学进展, 2025; 7: (3) : 47-60.